metal-organic compounds

 $\mu = 0.96 \text{ mm}^{-1}$

T = 100 (2) K

 $R_{\rm int} = 0.090$

514 parameters

 $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

 $0.23 \times 0.15 \times 0.14 \text{ mm}$

34715 measured reflections

7296 independent reflections

5113 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Piperazinediium bis[bis(pyridine-2,6dicarboxylato)ferrate(III)] monohydrate

Hossein Aghabozorg,^a* Andya Nemati,^a Zohreh Derikvand^a and Mohammad Ghadermazi^b

^aFaculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran, and ^bDepartment of Chemistry, University of Kurdistan, Sanandaj, Iran Correspondence e-mail: haghabozorg@yahoo.com

Received 30 October 2007; accepted 2 November 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.042; *wR* factor = 0.081; data-to-parameter ratio = 14.2.

The asymmetric unit of the title compound, $(C_4H_{12}N_2)$ -[Fe(C₇H₃NO₄)₂]₂·H₂O or (pipzH₂)²⁺·2[Fe(pydc)₂]⁻·H₂O (pipz is piperazine and pydcH₂ is pyridine-2,6-dicarboxylic acid), contains one dication, two anions and one uncoordinated water molecule. In the anions, each Fe^{III} ion is hexacoordinated by four O [Fe-O = 2.005 (2)-2.044 (2) Å] and two N [Fe-N = 2.050 (2)-2.075 (2) Å] atoms in a distorted octahedral geometry. An extensive three-dimensional network formed by classical O-H···O and N-H···O and weak C-H···O intermolecular hydrogen bonds stabilizes the crystal packing, which also exhibits π - π [centroid–centroid distances 3.500 (2)-3.533 (2) Å] and C-H··· π interactions.

Related literature

For related crystal structures, see: Aghabozorg, Attar Gharamaleki *et al.* (2007*a*,*b*); Aghabozorg, Motyeian *et al.* (2007); Aghabozorg, Sadrkhanlou *et al.* (2007); Sheshmani *et al.* (2006).

Experimental

Crystal data $(C_4H_{12}N_2) \cdot [Fe(C_7H_3NO_4)_2]_2 \cdot H_2O$ $M_r = 878.29$ Monoclinic, $P2_1/n$

a = 7.016 (3) Åb = 24.855 (9) Åc = 19.422 (7) Å $\beta = 98.697 (14)^{\circ}$ $V = 3348 (2) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (APEX2; Bruker, 2005) $T_{min} = 0.795, T_{max} = 0.878$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.081$ S = 1.007296 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the N1/C1-C5 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5-H5A\cdots O8$	0.90	1.94	2.836 (4)	175
$N5-H5B\cdots O4^{i}$	0.90	1.88	2.742 (4)	161
$N6-H6A\cdotsO11$	0.90	1.94	2.816 (4)	165
$N6-H6B\cdots O14^{ii}$	0.90	1.84	2.738 (4)	174
$O1W - H1W \cdot \cdot \cdot O2$	0.85	1.95	2.805 (4)	176
$O1W - H2W \cdot \cdot \cdot O7^{iii}$	0.87	2.01	2.837 (4)	160
$C4 - H4A \cdots O10^{iv}$	0.93	2.31	3.221 (4)	167
$C9-H9A\cdots O6^{v}$	0.93	2.28	3.103 (4)	148
$C11-H11A\cdots O15^{vi}$	0.93	2.39	3.126 (4)	136
$C16-H16A\cdotsO1^{vii}$	0.93	2.52	3.324 (4)	144
C17−H17A···O3 ^{viii}	0.93	2.51	3.237 (4)	135
C18−H18A···O12 ^{ix}	0.93	2.45	3.234 (4)	142
$C25-H25A\cdots O16^{iv}$	0.93	2.33	3.223 (4)	162
$C29-H29A\cdots O10^{x}$	0.97	2.38	3.171 (4)	138
$C30-H30A\cdotsO1W$	0.97	2.27	3.221 (4)	167
$C31-H31B\cdots O6^{xi}$	0.97	2.45	3.135 (4)	127
$C32-H32A\cdots O1W^{ii}$	0.97	2.59	3.495 (4)	155
$C32-H32B\cdots O5^{xi}$	0.97	2.54	3.340 (4)	140
$C23-H23A\cdots Cg4^{iii}$	0.93	2.81	3.591 (4)	142

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2339).

References

- Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007*a*). Acta Cryst. E63, m1803–m1804.
- Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007b). Acta Cryst. E63, m1710-m1711.
- Aghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). *Acta Cryst.* E63, m1754–m1755.
- Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst. E62, 03620-03622.

Acta Cryst. (2007). E63, m2921 [doi:10.1107/S1600536807055468]

Piperazinediium bis[bis(pyridine-2,6-dicarboxylato)ferrate(III)] monohydrate

H. Aghabozorg, A. Nemati, Z. Derikvand and M. Ghadermazi

Comment

Recent interest of our research group has focused on self-assembling synthesis and characterization of novel metal complexes of proton transfer compounds (Aghabozorg, Sadrkhanlou *et al.*, 2007; Aghabozorg, Motyeian *et al.*, 2007; Aghabozorg, Attar Gharamaleki *et al.*, 2007*a*,b). The pyridine-2,6-dicarboxylate ion is an effective tridentate chelating ligand forming stable complexes with most metal ions (Sheshmani *et al.*, 2006). This compound has not been crystallized until now but its metal-organic derivatives can be obtained as suitable crystals. We have recently reported the crystal structures of new compounds synthesized using this ligand and piperazinediium as counter-ion. In this report, the crystal structure of the title iron(III) derivative, (I), is described.

The Fe1^{III} and Fe2^{III} ions are located at the centers of a distorted octahedrons (Fig.1). The angles N1—Fe1—N2 [169.31 (10)°], O1—Fe1—O3 [151.57 (9)°], O5—Fe1—O7 [151.57 (8)°], N3—Fe2—N4 [170.52 (10)°], O9—Fe2—O11 [151.29 (8)°] and O13—Fe2—O15 [151.16 (8)°] indicate some difference in Fe1^{III} and Fe2^{III} coordination geometries.

The torsion angles C7—O3—Fe1—O5 [86.8 (2)°] and C6— O1—Fe1—O5 [-91.3 (2)°] indicate that two dianionic pydc^{2–} units connecting to Fe1^{III} ion, are almost perpendicular to each other. The same is valid for Fe2 center, proved by torsion angles C27— O13—Fe2—O9 [92.4 (2)°] and C28— O15—Fe2—O9 [-90.1 (2)°]

In this work we use Fe^{2+} ions as starting material. Most probably, during the synthesis, Fe^{2+} ions oxidize into Fe^{3+} ions and in our crystalline product we obtain Fe^{III} complexes.

There are π - π stacking interactions between the anions, proved by short distances $Cg1\cdots Cg2^{i}$, $Cg1\cdots Cg2^{ii}$ and $Cg3\cdots Cg3^{iii}$ of 3.500 (2), 3.533 (2) and 3.724 (2) Å, respectively [Cg1, Cg2 and Cg3 are centroids of N2/C8—C12, N3/C15—C19 and N4/C22—C26 rings, respectively. Symmetry codes: (i) 1/2 - x, -1/2 + y, 1/2 - z; (ii) 3/2 - x, -1/2 + y, 1/2 - z; (iii) -x, 1 - y, -z]. Also C—H··· π interactions exist in the crystal, with C23··· $Cg4^{iv}$ distance of 3.591 (4) Å (Fig. 2) [symmetry code: (iv) -1 + x, y, z]. The extensive O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) between [Fe1(pydc)₂]⁻, [Fe2(pydc)₂]⁻, (pipzH₂)²⁺ and uncoordinated water molecules play an important role in stabilization of the crystal packing (Fig. 3).

Experimental

The proton transfer compound (pipzH₂)(pydcH)₂·3H₂O, was prepared by the reaction of pyridine-2,6-dicarboxylic acid (pydcH₂) with piperazine (pipz), (Sheshmani *et al.*, 2006). The reaction between FeSO₄·7H₂O (139 mg, 0.5 mmol) in water (25 ml) and the proton transfer compound (pipzH₂)(pydcH)₂·3H₂O (253 mg, 1.0 mmol) in water (25 ml), in a 1:2 molar ratio was carried by slow evaporation of the solvent at room temperature.

Refinement

The C– and N-bound H atoms were geometrically positioned (C—H 0.93–0.97 Å, N—H 0.90 Å). Hydrogen atoms of water molecule were found in difference Fourier map and placed in idealized positions with O—H = 0.85, 0.87 Å. All hydrogen atoms were refined in riding model, with $U_{iso}(H) = 1.2 U_{eq}$ of the parent atom.

Figures

Fig. 1. **Fig. 1.** The content of asymmetric unit of compound (I) showing the atomic numbering and displacement ellipsoids at the 50% proability level. Hydrogen bonds are shown as dashed lines.

Fig. 2. Fig. 2. Intermolecular π - π and C—H··· π interactions (dashed lines) between anionic fragments in (I).

Fig. 3. Fig.3 A portion of the crystal packing viewed approximately down the *a* axis. Hydrogen bonds are shown as dashed lines.

Piperazinediium bis[bis(pyridine-2,6-dicarboxylato)ferrate(III)] monohydrate

Crystal data	
$(C_4H_{12}N_2) \cdot [Fe(C_7H_3NO_4)_2]_2 \cdot H_2O$	$F_{000} = 1792$
$M_r = 878.29$	$D_{\rm x} = 1.743 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.016 (3) Å	Cell parameters from 3260 reflections
<i>b</i> = 24.855 (9) Å	$\theta = 3-25^{\circ}$
c = 19.422 (7) Å	$\mu = 0.96 \text{ mm}^{-1}$
$\beta = 98.697 \ (14)^{\circ}$	T = 100 (2) K
$V = 3348 (2) \text{ Å}^3$	Prism, light yellow
<i>Z</i> = 4	$0.23\times0.15\times0.14~mm$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	7296 independent reflections
Radiation source: fine-focus sealed tube	5113 reflections with $I > 2u(I)$
Monochromator: graphite	$R_{\rm int} = 0.090$
T = 100(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
phi and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (APEX2; Bruker, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.795, T_{\max} = 0.878$	$k = -31 \rightarrow 31$
34715 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.081$	$w = 1/[\sigma^2(F_o^2) + (0.01P)^2 + 5.P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
7296 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
514 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Fe1	0.71620 (6)	0.207066 (17)	0.04276 (2)	0.01291 (11)
01	0.4764 (3)	0.24328 (8)	0.06569 (11)	0.0166 (5)
O2	0.2727 (3)	0.31326 (9)	0.04273 (12)	0.0211 (5)
O3	0.9642 (3)	0.20780 (8)	0.00102 (11)	0.0165 (5)
O4	1.1158 (3)	0.24126 (9)	-0.08327 (11)	0.0207 (5)
05	0.5842 (3)	0.15623 (8)	-0.02932 (11)	0.0163 (5)

O6	0.5183 (3)	0.06986 (8)	-0.05937 (11)	0.0174 (5)
O7	0.8526 (3)	0.22327 (8)	0.14032 (10)	0.0156 (5)
O8	0.9823 (3)	0.19068 (8)	0.24467 (11)	0.0175 (5)
N1	0.6895 (4)	0.27400 (9)	-0.01967 (13)	0.0121 (5)
N2	0.7583 (3)	0.13279 (10)	0.08960 (12)	0.0116 (5)
C1	0.5311 (4)	0.30378 (12)	-0.02266 (15)	0.0137 (7)
C2	0.4961 (5)	0.34517 (12)	-0.07039 (16)	0.0171 (7)
H2A	0.3861	0.3664	-0.0727	0.021*
C3	0.6304 (5)	0.35402 (12)	-0.11464 (16)	0.0176 (7)
H3A	0.6095	0.3814	-0.1476	0.021*
C4	0.7966 (5)	0.32254 (12)	-0.11064 (16)	0.0174 (7)
H4A	0.8875	0.3287	-0.1400	0.021*
C5	0.8212 (4)	0.28188 (12)	-0.06154 (15)	0.0133 (7)
C6	0.4107 (4)	0.28637 (12)	0.03254 (15)	0.0141 (7)
C7	0.9836 (4)	0.24122 (12)	-0.04780 (15)	0.0142 (7)
C8	0.6869 (4)	0.08948 (12)	0.05390 (15)	0.0125 (6)
C9	0.6972 (4)	0.03904 (12)	0.08467 (16)	0.0138 (7)
H9A	0.6493	0.0087	0.0600	0.017*
C10	0.7826 (4)	0.03575 (12)	0.15446 (16)	0.0146 (7)
H10A	0.7899	0.0026	0.1769	0.018*
C11	0.8566 (4)	0.08114 (12)	0.19087 (16)	0.0135 (7)
H11A	0.9132	0.0789	0.2373	0.016*
C12	0.8435 (4)	0.12969 (12)	0.15588 (15)	0.0123 (6)
C13	0.5878 (4)	0.10475 (12)	-0.01869 (15)	0.0129 (7)
C14	0.9016 (4)	0.18461 (12)	0.18457 (16)	0.0139 (7)
Fe2	0.13045 (6)	0.498478 (18)	0.22775 (2)	0.01192 (10)
O9	0.0081 (3)	0.57045 (8)	0.19928 (10)	0.0158 (5)
O10	-0.0516 (3)	0.65490 (8)	0.23228 (11)	0.0192 (5)
011	0.2693 (3)	0.44742 (8)	0.30124 (10)	0.0139 (5)
O12	0.4383 (3)	0.43939 (9)	0.40847 (11)	0.0174 (5)
O13	-0.1175 (3)	0.45562 (8)	0.22040 (10)	0.0155 (5)
O14	-0.3321 (3)	0.40362 (8)	0.15340 (11)	0.0171 (5)
015	0.3776 (3)	0.51753 (8)	0.19324 (10)	0.0161 (5)
O16	0.5341 (3)	0.52268 (8)	0.10081 (11)	0.0180 (5)
N3	0.1764 (3)	0.54382 (10)	0.31847 (12)	0.0110 (5)
N4	0.1015 (4)	0.46452 (10)	0.13012 (13)	0.0126 (5)
C15	0.1258 (4)	0.59589 (12)	0.31464 (16)	0.0132 (7)
C16	0.1758 (4)	0.62933 (12)	0.37140 (16)	0.0152 (7)
H16A	0.1431	0.6656	0.3689	0.018*
C17	0.2763 (4)	0.60755 (13)	0.43247 (16)	0.0153 (7)
H17A	0.3119	0.6294	0.4711	0.018*
C18	0.3234 (4)	0.55302 (12)	0.43571 (15)	0.0137 (7)
H18A	0.3860	0.5377	0.4767	0.016*
C19	0.2742 (4)	0.52220 (12)	0.37614 (15)	0.0123 (6)
C20	0.0167 (4)	0.60987 (12)	0.24339 (16)	0.0150 (7)
C21	0.3333 (4)	0.46497 (12)	0.36450 (15)	0.0124 (6)
C22	-0.0591 (4)	0.43742 (12)	0.10654 (15)	0.0124 (6)
C23	-0.0907 (4)	0.41764 (12)	0.03954 (16)	0.0157 (7)
H23A	-0.2026	0.3987	0.0229	0.019*

C24	0.0505 (5)	0.42688 (12)	-0.00249 (16)	0.0173 (7)
H24A	0.0324	0.4142	-0.0481	0.021*
C25	0.2179 (5)	0.45485 (12)	0.02302 (15)	0.0145 (7)
H25A	0.3134	0.4607	-0.0045	0.017*
C26	0.2377 (4)	0.47350 (12)	0.09018 (16)	0.0129 (6)
C27	-0.1845 (4)	0.43116 (12)	0.16316 (16)	0.0140 (7)
C28	0.4009 (4)	0.50685 (12)	0.12910 (15)	0.0129 (6)
N5	0.7543 (4)	0.27251 (11)	0.29327 (13)	0.0203 (6)
H5A	0.8324	0.2478	0.2784	0.024*
H5B	0.7175	0.2602	0.3328	0.024*
N6	0.5561 (4)	0.37357 (10)	0.27689 (13)	0.0166 (6)
H6A	0.4776	0.3982	0.2918	0.020*
H6B	0.5913	0.3858	0.2370	0.020*
C29	0.5805 (5)	0.28004 (13)	0.23931 (17)	0.0209 (8)
H29A	0.5115	0.2462	0.2314	0.025*
H29B	0.6200	0.2912	0.1958	0.025*
C30	0.4504 (5)	0.32196 (12)	0.26320 (17)	0.0185 (7)
H30A	0.3391	0.3273	0.2277	0.022*
H30B	0.4052	0.3098	0.3054	0.022*
C31	0.7309 (5)	0.36691 (13)	0.33023 (16)	0.0189 (7)
H31A	0.6925	0.3568	0.3744	0.023*
H31B	0.7997	0.4008	0.3367	0.023*
C32	0.8625 (5)	0.32418 (13)	0.30800 (17)	0.0209 (7)
H32A	0.9122	0.3360	0.2665	0.025*
H32B	0.9710	0.3186	0.3446	0.025*
O1W	0.0582 (3)	0.32196 (9)	0.15291 (11)	0.0226 (5)
H1W	0.1188	0.3197	0.1181	0.027*
H2W	0.0181	0.2892	0.1568	0.027*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0157 (2)	0.0105 (2)	0.0122 (2)	0.00008 (19)	0.00130 (18)	0.00209 (18)
01	0.0188 (12)	0.0156 (12)	0.0168 (12)	0.0003 (10)	0.0070 (9)	0.0033 (9)
O2	0.0193 (13)	0.0191 (12)	0.0262 (13)	0.0045 (10)	0.0079 (10)	-0.0017 (10)
O3	0.0163 (12)	0.0166 (11)	0.0167 (11)	0.0039 (10)	0.0033 (9)	0.0028 (10)
O4	0.0174 (12)	0.0284 (13)	0.0176 (12)	0.0019 (10)	0.0073 (10)	-0.0019 (10)
O5	0.0185 (12)	0.0131 (11)	0.0160 (11)	0.0004 (9)	-0.0018 (9)	0.0015 (9)
O6	0.0177 (12)	0.0165 (12)	0.0180 (12)	-0.0033 (10)	0.0023 (9)	-0.0029 (10)
O7	0.0211 (12)	0.0109 (11)	0.0142 (11)	0.0005 (9)	0.0010 (9)	0.0014 (9)
O8	0.0178 (12)	0.0189 (12)	0.0148 (12)	0.0027 (10)	-0.0004 (9)	-0.0017 (9)
N1	0.0132 (13)	0.0103 (13)	0.0125 (13)	-0.0005 (11)	0.0005 (10)	-0.0016 (11)
N2	0.0108 (13)	0.0119 (13)	0.0129 (13)	0.0017 (10)	0.0042 (10)	0.0007 (11)
C1	0.0137 (16)	0.0122 (16)	0.0139 (16)	-0.0014 (13)	-0.0016 (13)	-0.0035 (12)
C2	0.0228 (18)	0.0126 (16)	0.0146 (16)	0.0010 (14)	-0.0017 (14)	-0.0013 (13)
C3	0.0299 (19)	0.0080 (15)	0.0137 (16)	-0.0013 (14)	0.0000 (14)	-0.0001 (13)
C4	0.0249 (18)	0.0159 (16)	0.0123 (16)	-0.0038 (14)	0.0061 (14)	-0.0020 (13)
C5	0.0140 (16)	0.0146 (16)	0.0107 (15)	-0.0030 (13)	0.0000 (12)	-0.0033 (12)

C6	0.0143 (16)	0.0154 (16)	0.0125 (16)	-0.0007 (14)	0.0014 (12)	-0.0010 (13)
C7	0.0160 (17)	0.0146 (16)	0.0110 (15)	-0.0023 (13)	-0.0009 (13)	-0.0042 (13)
C8	0.0090 (15)	0.0135 (16)	0.0161 (16)	0.0024 (13)	0.0051 (12)	-0.0005 (13)
С9	0.0120 (16)	0.0097 (15)	0.0209 (17)	0.0007 (13)	0.0065 (13)	-0.0010 (13)
C10	0.0138 (16)	0.0108 (15)	0.0205 (17)	0.0036 (13)	0.0064 (13)	0.0050 (13)
C11	0.0135 (16)	0.0150 (16)	0.0130 (16)	0.0059 (13)	0.0052 (13)	0.0029 (13)
C12	0.0087 (15)	0.0173 (16)	0.0116 (15)	0.0031 (13)	0.0035 (12)	0.0005 (13)
C13	0.0095 (15)	0.0173 (17)	0.0130 (16)	-0.0001 (13)	0.0055 (12)	-0.0024 (13)
C14	0.0122 (16)	0.0155 (16)	0.0150 (17)	0.0027 (13)	0.0055 (13)	0.0001 (13)
Fe2	0.0134 (2)	0.0123 (2)	0.0103 (2)	-0.00072 (19)	0.00259 (17)	-0.00144 (18)
O9	0.0195 (12)	0.0147 (11)	0.0124 (11)	-0.0005 (10)	0.0002 (9)	0.0002 (9)
O10	0.0218 (13)	0.0143 (12)	0.0228 (12)	0.0033 (10)	0.0082 (10)	0.0048 (10)
O11	0.0163 (12)	0.0135 (11)	0.0123 (11)	0.0023 (9)	0.0034 (9)	-0.0015 (9)
O12	0.0169 (12)	0.0194 (12)	0.0152 (12)	0.0041 (10)	0.0000 (9)	0.0025 (10)
O13	0.0166 (12)	0.0159 (12)	0.0144 (11)	-0.0004 (9)	0.0041 (9)	-0.0024 (9)
O14	0.0158 (12)	0.0179 (12)	0.0172 (12)	-0.0049 (10)	0.0014 (9)	-0.0005 (9)
O15	0.0154 (12)	0.0208 (12)	0.0130 (11)	-0.0039 (9)	0.0046 (9)	-0.0034 (9)
O16	0.0170 (12)	0.0188 (12)	0.0193 (12)	-0.0035 (10)	0.0065 (10)	-0.0004 (10)
N3	0.0088 (13)	0.0121 (13)	0.0131 (13)	-0.0005 (10)	0.0046 (10)	-0.0021 (10)
N4	0.0148 (14)	0.0109 (13)	0.0128 (13)	0.0019 (11)	0.0044 (11)	0.0005 (11)
C15	0.0122 (16)	0.0134 (16)	0.0160 (16)	-0.0003 (13)	0.0086 (13)	0.0004 (13)
C16	0.0138 (16)	0.0139 (16)	0.0203 (17)	-0.0014 (13)	0.0109 (13)	-0.0030 (13)
C17	0.0105 (16)	0.0205 (17)	0.0159 (16)	-0.0043 (13)	0.0059 (13)	-0.0085 (13)
C18	0.0103 (16)	0.0205 (17)	0.0109 (15)	-0.0020 (13)	0.0038 (12)	-0.0003 (13)
C19	0.0097 (15)	0.0157 (16)	0.0125 (15)	-0.0010 (13)	0.0047 (12)	0.0013 (13)
C20	0.0119 (16)	0.0160 (17)	0.0189 (17)	-0.0028 (13)	0.0078 (13)	0.0027 (14)
C21	0.0108 (15)	0.0150 (16)	0.0127 (16)	-0.0023 (13)	0.0056 (12)	-0.0005 (13)
C22	0.0147 (16)	0.0089 (15)	0.0127 (15)	0.0001 (13)	-0.0006 (12)	0.0009 (12)
C23	0.0152 (17)	0.0142 (16)	0.0166 (16)	-0.0008 (13)	-0.0007 (13)	-0.0013 (13)
C24	0.0289 (19)	0.0122 (16)	0.0104 (15)	0.0011 (14)	0.0022 (14)	-0.0021 (13)
C25	0.0205 (17)	0.0121 (16)	0.0119 (16)	0.0016 (13)	0.0055 (13)	0.0007 (13)
C26	0.0155 (16)	0.0076 (15)	0.0159 (16)	0.0007 (13)	0.0038 (13)	0.0019 (12)
C27	0.0154 (17)	0.0113 (16)	0.0146 (16)	0.0012 (13)	0.0004 (13)	0.0030 (13)
C28	0.0138 (16)	0.0112 (16)	0.0144 (15)	0.0041 (13)	0.0042 (12)	0.0020 (13)
N5	0.0276 (16)	0.0215 (15)	0.0125 (14)	0.0096 (13)	0.0055 (12)	0.0026 (12)
N6	0.0182 (15)	0.0155 (14)	0.0171 (14)	0.0019 (12)	0.0058 (11)	-0.0023 (11)
C29	0.027 (2)	0.0171 (18)	0.0182 (17)	-0.0006 (14)	0.0004 (15)	-0.0008 (14)
C30	0.0163 (17)	0.0156 (17)	0.0238 (18)	-0.0012 (14)	0.0037 (14)	0.0015 (14)
C31	0.0204 (18)	0.0203 (18)	0.0158 (17)	-0.0035 (14)	0.0018 (14)	-0.0036 (14)
C32	0.0147 (17)	0.030 (2)	0.0180 (17)	0.0030 (15)	0.0021 (14)	0.0005 (15)
O1W	0.0269 (14)	0.0192 (12)	0.0228 (13)	-0.0035 (10)	0.0077 (10)	-0.0009 (10)

Geometric parameters (Å, °)

Fe1—O5	2.005 (2)	O13—C27	1.292 (3)
Fe1—O1	2.017 (2)	O14—C27	1.232 (4)
Fe1—O3	2.028 (2)	O15—C28	1.308 (3)
Fe1—O7	2.030 (2)	O16—C28	1.219 (3)
Fe1—N1	2.050 (2)	N3—C19	1.335 (4)

Fe1—N2	2.060 (3)	N3—C15	1.341 (4)
O1—C6	1.297 (4)	N4—C22	1.333 (4)
O2—C6	1.217 (4)	N4—C26	1.338 (4)
O3—C7	1.283 (4)	C15—C16	1.383 (4)
O4—C7	1.236 (3)	C15—C20	1.517 (4)
O5—C13	1.296 (4)	C16—C17	1.394 (4)
O6—C13	1.224 (3)	C16—H16A	0.9300
O7—C14	1.300 (3)	C17—C18	1.394 (4)
O8—C14	1.227 (4)	C17—H17A	0.9300
N1—C1	1.329 (4)	C18—C19	1.387 (4)
N1—C5	1.335 (4)	C18—H18A	0.9300
N2—C8	1.336 (4)	C19—C21	1.508 (4)
N2—C12	1.337 (4)	C22—C23	1.377 (4)
C1—C2	1.382 (4)	C22—C27	1.517 (4)
C1—C6	1.524 (4)	C23—C24	1.395 (4)
C2—C3	1.385 (4)	C23—H23A	0.9300
C2—H2A	0.9300	C24—C25	1.390 (4)
C3—C4	1.397 (4)	C24—H24A	0.9300
С3—НЗА	0.9300	C25—C26	1.371 (4)
C4—C5	1.382 (4)	C25—H25A	0.9300
C4—H4A	0.9300	C26—C28	1.519 (4)
С5—С7	1.516 (4)	N5—C29	1.494 (4)
C8—C9	1.386 (4)	N5—C32	1.497 (4)
C8—C13	1.523 (4)	N5—H5A	0.9000
C9—C10	1.399 (4)	N5—H5B	0.9000
С9—Н9А	0.9300	N6—C30	1.485 (4)
C10—C11	1.390 (4)	N6—C31	1.490 (4)
C10—H10A	0.9300	N6—H6A	0.9000
C11—C12	1.381 (4)	N6—H6B	0.9000
C11—H11A	0.9300	C29—C30	1.504 (4)
C12—C14	1.507 (4)	С29—Н29А	0.9700
Fe2—O15	2.008 (2)	С29—Н29В	0.9700
Fe2—O9	2.025 (2)	C30—H30A	0.9700
Fe2—O13	2.026 (2)	С30—Н30В	0.9700
Fe2—O11	2.044 (2)	C31—C32	1.512 (4)
Fe2—N4	2.057 (3)	C31—H31A	0.9700
Fe2—N3	2.075 (2)	C31—H31B	0.9700
O9—C20	1.297 (4)	С32—Н32А	0.9700
O10—C20	1.224 (4)	С32—Н32В	0.9700
O11—C21	1.317 (3)	O1W—H1W	0.8540
O12—C21	1.219 (3)	O1W—H2W	0.8677
O5—Fe1—O1	97.06 (9)	C19—N3—C15	122.2 (3)
O5—Fe1—O3	93.44 (9)	C19—N3—Fe2	119.2 (2)
O1—Fe1—O3	151.57 (9)	C15—N3—Fe2	118.1 (2)
O5—Fe1—O7	151.57 (8)	C22—N4—C26	121.7 (3)
O1—Fe1—O7	89.81 (9)	C22—N4—Fe2	119.0 (2)
O3—Fe1—O7	93.41 (9)	C26—N4—Fe2	119.1 (2)
O5—Fe1—N1	96.14 (9)	N3—C15—C16	120.2 (3)
O1—Fe1—N1	76.33 (9)	N3—C15—C20	111.4 (3)

O3—Fe1—N1	76.32 (9)	C16—C15—C20	128.4 (3)
O7—Fe1—N1	112.28 (9)	C15—C16—C17	118.6 (3)
O5—Fe1—N2	76.34 (9)	C15—C16—H16A	120.7
O1—Fe1—N2	111.80 (9)	С17—С16—Н16А	120.7
O3—Fe1—N2	96.32 (9)	C18—C17—C16	120.1 (3)
O7—Fe1—N2	75.50 (9)	С18—С17—Н17А	119.9
N1—Fe1—N2	169.31 (10)	C16—C17—H17A	119.9
C6—O1—Fe1	120.28 (19)	C19—C18—C17	118.2 (3)
C7—O3—Fe1	119.63 (19)	C19—C18—H18A	120.9
C13—O5—Fe1	121.01 (19)	C17—C18—H18A	120.9
C14—O7—Fe1	120.71 (19)	N3—C19—C18	120.6 (3)
C1—N1—C5	122.9 (3)	N3-C19-C21	111.8 (3)
C1—N1—Fe1	118.6 (2)	C18—C19—C21	127.3 (3)
C5—N1—Fe1	118.0 (2)	O10-C20-O9	126.6 (3)
C8—N2—C12	122.1 (3)	O10-C20-C15	120.0 (3)
C8—N2—Fe1	118.4 (2)	O9—C20—C15	113.4 (3)
C12—N2—Fe1	119.4 (2)	O12—C21—O11	124.4 (3)
N1—C1—C2	120.4 (3)	O12—C21—C19	122.5 (3)
N1—C1—C6	111.1 (3)	O11—C21—C19	112.9 (3)
C2—C1—C6	128.5 (3)	N4—C22—C23	120.8 (3)
C1—C2—C3	117.8 (3)	N4—C22—C27	110.8 (3)
C1—C2—H2A	121.1	C23—C22—C27	128.3 (3)
С3—С2—Н2А	121.1	C22—C23—C24	117.8 (3)
C2—C3—C4	121.1 (3)	С22—С23—Н23А	121.1
С2—С3—НЗА	119.4	C24—C23—H23A	121.1
С4—С3—Н3А	119.4	C25—C24—C23	120.7 (3)
C5—C4—C3	117.6 (3)	C25—C24—H24A	119.7
С5—С4—Н4А	121.2	C23—C24—H24A	119.7
C3—C4—H4A	121.2	C26—C25—C24	117.8 (3)
N1—C5—C4	120.1 (3)	C26—C25—H25A	121.1
N1—C5—C7	111.5 (3)	C24—C25—H25A	121.1
C4—C5—C7	128.4 (3)	N4—C26—C25	121.1 (3)
O2—C6—O1	127.1 (3)	N4—C26—C28	110.7 (3)
O2—C6—C1	119.8 (3)	C25—C26—C28	128.2 (3)
O1—C6—C1	113.0 (3)	O14—C27—O13	125.6 (3)
O4—C7—O3	125.8 (3)	O14—C27—C22	120.8 (3)
O4—C7—C5	120.6 (3)	O13—C27—C22	113.6 (3)
O3—C7—C5	113.6 (3)	O16—C28—O15	125.4 (3)
N2—C8—C9	120.9 (3)	O16-C28-C26	121.6 (3)
N2—C8—C13	111.3 (3)	O15—C28—C26	113.0 (2)
C9—C8—C13	127.7 (3)	C29—N5—C32	111.3 (2)
C8—C9—C10	117.2 (3)	C29—N5—H5A	109.4
С8—С9—Н9А	121.4	C32—N5—H5A	109.4
С10—С9—Н9А	121.4	C29—N5—H5B	109.4
C11—C10—C9	121.2 (3)	C32—N5—H5B	109.4
C11—C10—H10A	119.4	H5A—N5—H5B	108.0
С9—С10—Н10А	119.4	C30—N6—C31	111.4 (2)
C12—C11—C10	117.8 (3)	C30—N6—H6A	109.4
C12—C11—H11A	121.1	C31—N6—H6A	109.4

C10-C11-H11A	121.1	C30—N6—H6B	109.4
N2-C12-C11	120.7 (3)	C31—N6—H6B	109.4
N2-C12-C14	111.1 (3)	H6A—N6—H6B	108.0
C11—C12—C14	128.0 (3)	N5-C29-C30	109.8 (3)
O6—C13—O5	126.9 (3)	N5—C29—H29A	109.7
O6—C13—C8	120.2 (3)	С30—С29—Н29А	109.7
O5—C13—C8	112.9 (3)	N5—C29—H29B	109.7
O8—C14—O7	125.2 (3)	С30—С29—Н29В	109.7
O8—C14—C12	121.5 (3)	H29A—C29—H29B	108.2
O7—C14—C12	113.3 (3)	N6-C30-C29	110.1 (3)
O15—Fe2—O9	93.01 (9)	N6—C30—H30A	109.6
O15—Fe2—O13	151.16 (8)	С29—С30—Н30А	109.6
O9—Fe2—O13	96.96 (9)	N6—C30—H30B	109.6
O15—Fe2—O11	92.01 (9)	С29—С30—Н30В	109.6
O9—Fe2—O11	151.29 (8)	H30A—C30—H30B	108.2
O13—Fe2—O11	92.08 (9)	N6—C31—C32	110.7 (3)
O15—Fe2—N4	76.05 (9)	N6—C31—H31A	109.5
O9—Fe2—N4	97.59 (9)	C32—C31—H31A	109.5
O13—Fe2—N4	75.84 (9)	N6—C31—H31B	109.5
O11—Fe2—N4	111.05 (9)	С32—С31—Н31В	109.5
O15—Fe2—N3	97.14 (9)	H31A—C31—H31B	108.1
O9—Fe2—N3	75.94 (9)	N5-C32-C31	110.1 (3)
O13—Fe2—N3	111.51 (9)	N5—C32—H32A	109.6
O11—Fe2—N3	75.39 (9)	С31—С32—Н32А	109.6
N4—Fe2—N3	170.52 (10)	N5—C32—H32B	109.6
C20—O9—Fe2	120.76 (19)	С31—С32—Н32В	109.6
C21—O11—Fe2	120.34 (18)	H32A—C32—H32B	108.2
C27—O13—Fe2	120.33 (19)	H1W—O1W—H2W	102.4
C28—O15—Fe2	120.59 (19)		
O5—Fe1—O1—C6	-91.3 (2)	O13—Fe2—O9—C20	113.2 (2)
O3—Fe1—O1—C6	19.5 (3)	O11—Fe2—O9—C20	5.8 (3)
O7—Fe1—O1—C6	116.3 (2)	N4—Fe2—O9—C20	-170.2 (2)
N1—Fe1—O1—C6	3.3 (2)	N3—Fe2—O9—C20	2.7 (2)
N2—Fe1—O1—C6	-169.4 (2)	O15—Fe2—O11—C21	91.7 (2)
O5—Fe1—O3—C7	86.8 (2)	O9—Fe2—O11—C21	-8.3 (3)
O1—Fe1—O3—C7	-24.9 (3)	O13—Fe2—O11—C21	-116.8 (2)
O7—Fe1—O3—C7	-120.8 (2)	N4—Fe2—O11—C21	167.5 (2)
N1—Fe1—O3—C7	-8.7 (2)	N3—Fe2—O11—C21	-5.2 (2)
N2—Fe1—O3—C7	163.4 (2)	O15—Fe2—O13—C27	-17.0 (3)
O1—Fe1—O5—C13	-113.5 (2)	O9—Fe2—O13—C27	92.4 (2)
O3—Fe1—O5—C13	93.0 (2)	O11—Fe2—O13—C27	-114.9 (2)
O7—Fe1—O5—C13	-10.7 (3)	N4—Fe2—O13—C27	-3.7 (2)
N1—Fe1—O5—C13	169.6 (2)	N3—Fe2—O13—C27	170.0 (2)
N2—Fe1—O5—C13	-2.7 (2)	O9—Fe2—O15—C28	-90.1 (2)
O5—Fe1—O7—C14	8.1 (3)	O13—Fe2—O15—C28	20.2 (3)
O1—Fe1—O7—C14	112.7 (2)	O11—Fe2—O15—C28	118.2 (2)
O3—Fe1—O7—C14	-95.6 (2)	N4—Fe2—O15—C28	7.0 (2)
N1—Fe1—O7—C14	-172.2 (2)	N3—Fe2—O15—C28	-166.3 (2)
N2—Fe1—O7—C14	0.1 (2)	O15—Fe2—N3—C19	-86.9 (2)

O5—Fe1—N1—C1	88.3 (2)	O9—Fe2—N3—C19	-178.3 (2)
O1—Fe1—N1—C1	-7.5 (2)	O13—Fe2—N3—C19	89.7 (2)
O3—Fe1—N1—C1	-179.6 (2)	O11—Fe2—N3—C19	3.3 (2)
O7—Fe1—N1—C1	-91.5 (2)	O15—Fe2—N3—C15	85.4 (2)
N2—Fe1—N1—C1	133.1 (5)	O9—Fe2—N3—C15	-5.9 (2)
O5—Fe1—N1—C5	-83.9 (2)	O13—Fe2—N3—C15	-98.0 (2)
O1—Fe1—N1—C5	-179.7 (2)	O11—Fe2—N3—C15	175.6 (2)
O3—Fe1—N1—C5	8.2 (2)	O15—Fe2—N4—C22	179.6 (2)
O7—Fe1—N1—C5	96.3 (2)	O9—Fe2—N4—C22	-89.1 (2)
N2—Fe1—N1—C5	-39.1 (6)	O13—Fe2—N4—C22	6.2 (2)
O5—Fe1—N2—C8	0.4 (2)	O11—Fe2—N4—C22	92.9 (2)
O1—Fe1—N2—C8	92.6 (2)	O15—Fe2—N4—C26	-5.2 (2)
O3—Fe1—N2—C8	-91.6 (2)	O9—Fe2—N4—C26	86.1 (2)
O7—Fe1—N2—C8	176.5 (2)	O13—Fe2—N4—C26	-178.6 (2)
N1—Fe1—N2—C8	-45.7 (6)	O11—Fe2—N4—C26	-91.9 (2)
O5—Fe1—N2—C12	-175.0 (2)	C19—N3—C15—C16	0.4 (4)
O1—Fe1—N2—C12	-82.7 (2)	Fe2—N3—C15—C16	-171.7 (2)
O3—Fe1—N2—C12	93.0 (2)	C19—N3—C15—C20	179.8 (3)
O7—Fe1—N2—C12	1.1 (2)	Fe2—N3—C15—C20	7.7 (3)
N1—Fe1—N2—C12	139.0 (5)	N3—C15—C16—C17	-1.0 (4)
C5—N1—C1—C2	-0.1 (4)	C20-C15-C16-C17	179.6 (3)
Fe1—N1—C1—C2	-171.9 (2)	C15—C16—C17—C18	-0.4 (4)
C5—N1—C1—C6	-178.6 (3)	C16—C17—C18—C19	2.5 (4)
Fe1—N1—C1—C6	9.7 (3)	C15—N3—C19—C18	1.8 (4)
N1—C1—C2—C3	0.4 (4)	Fe2—N3—C19—C18	173.8 (2)
C6—C1—C2—C3	178.5 (3)	C15—N3—C19—C21	-173.3 (3)
C1—C2—C3—C4	-0.7 (5)	Fe2—N3—C19—C21	-1.3 (3)
C2—C3—C4—C5	0.7 (5)	C17—C18—C19—N3	-3.1 (4)
C1—N1—C5—C4	0.2 (4)	C17—C18—C19—C21	171.1 (3)
Fe1—N1—C5—C4	172.0 (2)	Fe2—O9—C20—O10	-179.9 (2)
C1—N1—C5—C7	-178.5 (3)	Fe2—O9—C20—C15	0.5 (3)
Fe1—N1—C5—C7	-6.7 (3)	N3-C15-C20-O10	175.1 (3)
C3—C4—C5—N1	-0.5 (4)	C16-C15-C20-O10	-5.6 (5)
C3—C4—C5—C7	178.0 (3)	N3-C15-C20-O9	-5.3 (4)
Fe1—O1—C6—O2	-177.1 (2)	C16—C15—C20—O9	174.1 (3)
Fe1—O1—C6—C1	0.7 (3)	Fe2-011-C21-012	-170.2 (2)
N1-C1-C6-O2	171.4 (3)	Fe2-011-C21-C19	6.0 (3)
C2-C1-C6-O2	-6.9 (5)	N3—C19—C21—O12	173.4 (3)
N1-C1-C6-01	-6.6 (4)	C18—C19—C21—O12	-1.3 (5)
C2-C1-C6-01	175.1 (3)	N3—C19—C21—O11	-2.9 (3)
Fe1—O3—C7—O4	-170.4 (2)	C18—C19—C21—O11	-177.5 (3)
Fe1—O3—C7—C5	7.7 (3)	C26—N4—C22—C23	-0.1 (4)
N1—C5—C7—O4	177.7 (3)	Fe2—N4—C22—C23	175.0 (2)
C4—C5—C7—O4	-0.9 (5)	C26—N4—C22—C27	177.7 (3)
N1—C5—C7—O3	-0.5 (4)	Fe2—N4—C22—C27	-7.2 (3)
C4—C5—C7—O3	-179.1 (3)	N4—C22—C23—C24	0.0 (4)
C12—N2—C8—C9	0.5 (4)	C27—C22—C23—C24	-177.4 (3)
Fe1—N2—C8—C9	-174.8 (2)	C22—C23—C24—C25	0.5 (4)
C12—N2—C8—C13	176.7 (2)	C23—C24—C25—C26	-0.9 (4)

Fe1—N2—C8—C13	1.4 (3)	C22—N4—C26—C25	-0.3 (4)
N2-C8-C9-C10	0.9 (4)	Fe2—N4—C26—C25	-175.4 (2)
C13—C8—C9—C10	-174.7 (3)	C22—N4—C26—C28	178.0 (3)
C8—C9—C10—C11	-1.0 (4)	Fe2—N4—C26—C28	2.9 (3)
C9—C10—C11—C12	-0.1 (4)	C24—C25—C26—N4	0.8 (4)
C8—N2—C12—C11	-1.7 (4)	C24—C25—C26—C28	-177.2 (3)
Fe1—N2—C12—C11	173.5 (2)	Fe2-013-C27-O14	179.1 (2)
C8-N2-C12-C14	-177.1 (3)	Fe2—O13—C27—C22	1.1 (3)
Fe1-N2-C12-C14	-1.9 (3)	N4—C22—C27—O14	-174.2 (3)
C10-C11-C12-N2	1.5 (4)	C23—C22—C27—O14	3.5 (5)
C10-C11-C12-C14	176.1 (3)	N4—C22—C27—O13	3.9 (4)
Fe1-05-C13-06	-177.5 (2)	C23—C22—C27—O13	-178.5 (3)
Fe1-05-C13-C8	4.2 (3)	Fe2-015-C28-016	170.3 (2)
N2-C8-C13-O6	178.1 (3)	Fe2-015-C28-C26	-7.4 (3)
C9—C8—C13—O6	-6.0 (5)	N4—C26—C28—O16	-175.1 (3)
N2-C8-C13-O5	-3.5 (4)	C25—C26—C28—O16	3.1 (5)
C9—C8—C13—O5	172.4 (3)	N4-C26-C28-O15	2.7 (4)
Fe1-07-C14-08	-179.2 (2)	C25—C26—C28—O15	-179.1 (3)
Fe1-07-C14-C12	-1.1 (3)	C32—N5—C29—C30	-58.2 (3)
N2-C12-C14-O8	-180.0 (3)	C31—N6—C30—C29	-58.1 (3)
C11—C12—C14—O8	5.0 (5)	N5-C29-C30-N6	58.1 (3)
N2-C12-C14-O7	1.9 (4)	C30—N6—C31—C32	56.8 (3)
C11—C12—C14—O7	-173.1 (3)	C29—N5—C32—C31	56.7 (3)
O15—Fe2—O9—C20	-93.9 (2)	N6—C31—C32—N5	-55.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N5—H5A…O8	0.90	1.94	2.836 (4)	175
N5—H5B····O4 ⁱ	0.90	1.88	2.742 (4)	161
N6—H6A…O11	0.90	1.94	2.816 (4)	165
N6—H6B···O14 ⁱⁱ	0.90	1.84	2.738 (4)	174
O1W—H1W···O2	0.85	1.95	2.805 (4)	176
O1W—H2W···O7 ⁱⁱⁱ	0.87	2.01	2.837 (4)	160
C4—H4A···O10 ^{iv}	0.93	2.31	3.221 (4)	167
C9—H9A…O6 ^v	0.93	2.28	3.103 (4)	148
C11—H11A···O15 ^{vi}	0.93	2.39	3.126 (4)	136
C16—H16A····O1 ^{vii}	0.93	2.52	3.324 (4)	144
C17—H17A····O3 ^{viii}	0.93	2.51	3.237 (4)	135
C18—H18A···O12 ^{ix}	0.93	2.45	3.234 (4)	142
C25—H25A…O16 ^{iv}	0.93	2.33	3.223 (4)	162
C29—H29A…O10 ^x	0.97	2.38	3.171 (4)	138
C30—H30A…O1W	0.97	2.27	3.221 (4)	167
C31—H31B···O6 ^{xi}	0.97	2.45	3.135 (4)	127
C32—H32A···O1W ⁱⁱ	0.97	2.59	3.495 (4)	155
C32—H32B···O5 ^{xi}	0.97	2.54	3.340 (4)	140

C23—H23A···Cg4(N1/C1-C5) ⁱⁱⁱ	0.93	2.81	3.591 (4)	142
Symmetry codes: (i) <i>x</i> -1/2, - <i>y</i> +1/2, <i>z</i> +1/2; (ii) <i>x</i> +1	, <i>y</i> , <i>z</i> ; (iii) <i>x</i> −1, <i>y</i>	z; (iv) -x+1, -y+1, -y	-z; (v) $-x+1$, $-y$, $-z$; (vi)	-x+3/2, y-1/2, -z+1/
2; (vii) -x+1/2, y+1/2, -z+1/2; (viii) -x+3/2, y+1/2	z, -z+1/2; (ix) $-x$	+1, -y+1, -z+1; (x)	-x+1/2, y-1/2, -z+1/2; (x	(i) $x+1/2$, $-y+1/2$, $z+1/2$
2.				

Fig. 2

